Lie Algebra Decompositions with Applications to Quantum Dynamics Table of Contents List of Figures Figure 2.1 a Schematic Representation of the Khaneja Glaser Decomposition . . . 14

نویسندگان

  • Sung-Yell Song
  • Siu-Hung Ng
  • Umesh Vaidya
چکیده

Lie group decompositions are useful tools in the analysis and control of quantum systems. Several decompositions proposed in the literature are based on a recursive procedure that systematically uses the Cartan decomposition theorem. In this dissertation, we establish a link between Lie algebra gradings and recursive Lie algebra decompositions, and then we formulate a general scheme to generate Lie group decompositions. This scheme contains some procedures previously proposed as special cases and gives a virtually unbounded number of alternatives to factor elements of a Lie group.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Note on the Khaneja Glaser decomposition

Recently, Vatan and Williams utilize a matrix decomposition of SU(2n) introduced by Khaneja and Glaser to produce CNOT-efficient circuits for arbitrary three-qubit unitary evolutions. In this note, we place the Khaneja Glaser Decomposition (KGD) in context as a SU(2n) = KAK decomposition by proving that its Cartan involution is type AIII, given n ≥ 3. The standard type AIII involution produces ...

متن کامل

Lie algebra decompositions with applications to quantum dynamics

Lie group decompositions are useful tools in the analysis and control of quantum systems. Several decompositions proposed in the literature are based on a recursive procedure that systematically uses the Cartan decomposition theorem. In this dissertation, we establish a link between Lie algebra gradings and recursive Lie algebra decompositions, and then we formulate a general scheme to generate...

متن کامل

A new algorithm for producing quantum circuits using KAK decompositions

We provide a new algorithm that translates a unitary matrix into a quantum circuit according to the G = KAK theorem in Lie group theory. With our algorithm, any matrix decomposition corresponding to type-AIII KAK decompositions can be derived according to the given Cartan involution. Our algorithm contains, as its special cases, CosineSine decomposition (CSD) and Khaneja-Glaser decomposition (K...

متن کامل

Universal Central Extension of Current Superalgebras

Representation as well as central extension are two of the most important concepts in the theory of Lie (super)algebras. Apart from the interest of mathematicians, the attention of physicist are also drawn to these two subjects because of the significant amount of their applications in Physics. In fact for physicists, the study of projective representations of Lie (super)algebras  are very impo...

متن کامل

Reduction of Differential Equations by Lie Algebra of Symmetries

The paper is devoted to an application of Lie group theory to differential equations. The basic infinitesimal method for calculating symmetry group is presented, and used to determine general symmetry group of some differential equations. We include a number of important applications including integration of ordinary differential equations and finding some solutions of partial differential equa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008